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Universal Linear Prediction
by Model Order Weighting

Andrew C. Singer, Member, IEEE, and Meir Feder, Fellow, IEEE

Abstract—A common problem that arises in adaptive filtering,
autoregressive modeling, or linear prediction is the selection of an
appropriate order for the underlying linear parametric model.
We address this problem for linear prediction, but instead of
fixing a specific model order, we develop a sequential prediction
algorithm whose sequentially accumulated average squared pre-
diction error for any bounded individual sequence is as good
as the performance attainable by the best sequential linear
predictor of order less than some MMM . This predictor is found
by transforming linear prediction into a problem analogous to
the sequential probability assignment problem from universal
coding theory. The resulting universal predictor uses essentially a
performance-weighted average of all predictors for model orders
less than MMM . Efficient lattice filters are used to generate the
predictions of all the models recursively, resulting in a complexity
of the universal algorithm that is no larger than that of the largest
model order. Examples of prediction performance are provided
for autoregressive and speech data as well as an example of
adaptive data equalization.

Index Terms—Adaptive filters, Bayes procedures, learning sys-
tems, least squares methods, model order, prediction methods,
sequential decision procedures, universal coding, universal meth-
ods.

I. INTRODUCTION

AUTOREGRESSIVE (AR) modeling by predictive least-
squares, or linear prediction, forms the basis of a wide

variety of signal processing and communication systems in-
cluding adaptive filtering and control, speech modeling and
coding, adaptive channel equalization, parametric spectral es-
timation, and system identification. In linear prediction, the
signal at time is modeled (or predicted) as a linear
combination of, say, the previous samples, i.e.,

To apply linear prediction to the data, either for prediction
or for modeling purposes, we have to determine the value of
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the linear prediction coefficients as well as
the order . Given a batch of data points
and a fixed order , a common way to select the prediction
coefficients is to minimize the total squared prediction error,
i.e., select so that

arg min (1)

The resulting residual square error in batch fitting the th-order
linear prediction coefficients to the data is denoted

(2)

The selection of the model order is an important, but often
difficult, aspect of applying linear prediction to a particular
application. Intuitively, an appropriate model order for a
particular application depends both on the amount of memory
in the process and on the length of data over which the model
will be applied. On one hand, larger model orders can capture
the dynamics of a richer class of signals. On the other hand,
larger model orders also require proportionally larger data sets
for the parameters to be accurately estimated.

Some of the methods of model order selection that are
often used in practice include the Akaike information criterion
(AIC) [1], the minimum description length (MDL) proposed by
Rissanen [2], the Bayes information criterion (BIC) of Schwarz
[3], which is equivalent to the MDL in many settings, and the
predictive least-squares (PLS) principle of Rissanen [4], [5].
In their original form, the AIC and MDL criteria comprise an
explicit balance between the likelihood of the data given the
model and a penalty term for the complexity of the model.
Intuitively, in MDL, the goal is to minimize the number of
bits that would be required to “describe” the data. Since the
data could be modeled parametrically and then block encoded,
one approach would be to measure the block log-likelihood of
the data given a model and then penalize this model by the
additional number of bits required to encode its parameters.
For example, for an AR process with white Gaussian noise
drive, the log-likelihood of the data given the AR parameters
is directly proportional to the total squared linear prediction
error over the data. The leading term of the penalty that the
MDL assigns to a model of order for such a signal of length

is . Hence, for such a signal, according to the
original definition of the MDL, the model order is basically

1053–587X/99$10.00  1999 IEEE



2686 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 10, OCTOBER 1999

selected by finding the minimum of

(3)

with respect to . Note that in many recent applications of the
MDL (see e.g., [6]), a more refined penalty term is suggested.

The PLS criterion suggested later in [4] examines a se-
quential coding of the data, where the codelength of each
data point is proportional to its square sequential prediction
error. Since the parameters of the encoder are not optimized
over the entire block of data, but rather are determined online,
there is no “batch” penalty for their use. However, there is
an implicit penalty since for higher order models, a larger
squared prediction, or encoding, error is incurred due to the
lack of sufficient data to accurately estimate the parameters. In
fact, it was shown that in many cases, the PLS is essentially
another version of the MDL principle as it leads to the
same balance between likelihood and model complexity as
the original MDL.

This issue needs a further explanation, as it is relevant
to the main subject of the paper. The difference between
the “sequential” error leading to the PLS and the “batch”
prediction error is subtle and lies both in the method used to
compute the predictor coefficients and in the
samples over which the error is computed. The least-squares
batch prediction error , which is defined above, is
the total squared prediction error that results from applying the
fixed set of predictor coefficients obtained by minimizing the
square prediction error over the same set of data. In the nota-
tion above, is the batch predicted sequence. The sequential
prediction error, on the other hand, is the accumulated squared
prediction error that results from sequential application of a
time-varying set of predictor coefficients .
A common way to obtain the coefficients to predict

is to use the coefficients that minimize the batch error
over the samples observed so far, i.e., the
coefficients attaining . The resulting sequential
prediction error is

(4)

Note that now, the linear prediction coefficients are optimized
only over the data available up to but not including the value
to be predicted. In this sense, the sequential prediction error is
a “fair” measure of performance for prediction. The notation

denotes the predicted sequence. In addition, note that the
notations and for the accumulated square error
adopted in this paper actually stand for the standard Euclidean
norm of the batch and sequential prediction error signals.

By definition, for a given , the batch error
is a monotonic, nonincreasing function of since the class
of models of order contains all models of order less than .
This is not true for the sequential error . If fact, lower

Fig. 1. Sequentially accumulated average squared prediction errors of a
fourth-order autoregressive process shown for linear predictors of order
1; � � � ; 8.

order models can outperform larger order models, i.e., have a
smaller sequential prediction error. This is best visualized by
an example. Consider a fourth-order AR process, and suppose
that 75 samples of the process have been observed. An estimate
of the parameters of any order larger than four will concentrate
around the true parameters. However, the fourth-order estimate
will have a lower variance than would, say, a seventh-order
estimate. Therefore, although these parameter estimates will
asymptotically coincide, every time in which the seventh-order
model is used to predict the next sample, the prediction error
will also exhibit a larger variance. As shown in Fig. 1, since
the sequential prediction error measures the accumulation of
these errors and not their asymptotic value, the fourth-order
model indeed has the lowest sequential prediction error of any
model order. The PLS criterion selects a model according to
its sequential prediction error. This example shows that this is
indeed a valid criterion for order estimation.

In this paper, we are mainly interested in prediction (and not
in modeling), and we consider the sequential linear prediction
problem from a different perspective than is traditionally taken.
Rather than focusing on selecting a specific model order
and a set of parameters based on their relative performance,
we propose a method of prediction based on a weighted
combination (or mixture) over all possible predictors. For
reasons discussed later, we call this predictor universal with
respect to both parameters and model orders. We show,
basically, that the performance of this predictor is at least as
good as the best linear predictor of any model order, even
when the parameters are tuned to the data.

The paper begins, in the next section, with a brief back-
ground on universal prediction and universal coding. Its pur-
pose is to illustrate several concepts that so far have appeared
mainly in the information theory literature. We discuss uni-
versal prediction in both a probabilistic setting, where the data
is assumed to be an outcome of a stochastic process, and a
deterministic setting, where the data is a specific “individual
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sequence.” In particular, we discuss the universality of the
recursive least squares (RLS) algorithm, which can be used
to sequentially achieve the prediction performance of the best
fixed-order batch linear predictor, both in the stochastic setting
and for every bounded individual sequence. We note that
in general, measuring the performance relative to individual
sequences is stronger. Our proposed predictor is universal in
the stronger setting.

These concepts lay the framework for the main result of the
paper, presented in Section III, which is an algorithm for linear
prediction that is universal with respect to both the parameters
and model order for every individual sequence. The algorithm
uses the time-recursive and order-recursive RLS algorithm to
generate predictions of the next data point based on the linear
models that best fit the data observed so far, of all orders
up to some . Then, it generates a performance-weighted
combination of all the various predictors. The universality of
this algorithm is shown accordingly. First, as noted above and
analyzed in [7], for a given model order, the RLS predictor
is universal as it attains sequentially the same accumulated
prediction error as a batch predictor. Our main result, then,
bounds the additional sequential prediction error incurred by
our performance-weighted prediction scheme over the error of
the RLS algorithm with the best model order. This excess
error, due to the unknown model order, turns out to be
negligible.

An important feature of the proposed algorithm is its
computational efficiency. As discussed in Section IV, by using
an efficient lattice implementation, the proposed universal
prediction algorithm has a computational complexity that is
not larger than that of the largest model order in the mixture.
The development of the universal algorithm does not rely
on the problem being one of prediction, and therefore, in
Section IV, we also develop a lattice implementation of a
universal adaptive equalizer. Examples of the performance of
these algorithms are given in Section V, and some concluding
remarks are made in Section VI.

II. AN OVERVIEW OF UNIVERSAL PREDICTION

The general universal prediction problem is concerned with
the following situation. An observer sequentially receives a
sequence of observations . At each
time instant , after having seen
but not , the observer predicts the next outcome or,
more generally, makes a decision based on the observed
past . Associated with this prediction or decision and
the actual outcome , there is a loss function
that measures performance. A common example occurs when

is an estimate of based on , and
is some estimation performance criterion, e.g.,

the Hamming distance (if is discrete). In this paper, we
consider the squared error as the
performance criterion.

In the probabilistic setting of the universal prediction prob-
lem, it is assumed that the data is governed by some unknown
probabilistic model . The objective of a universal predictor
is normally to minimize the expected cumulative loss, at least

asymptotically for large , simultaneously for any source in
a certain class. Specifically, a universal predictor
does not depend on the unknown , yet it keeps the difference
between its average expected loss
and the optimal average expected loss attained when is
known, vanishingly small for large .

The simplest situation in the probabilistic setting is univer-
sality with respect to an indexed class of sources, where it is
assumed that the source is unknown except that it is a member
of a certain indexed class , where is the index
set. Most commonly, designates a parameter vector of a
smooth parametric family, e.g., the families of finite-alphabet
memoryless sources, th-order Markov sources, or AR( ),
which is the class of th-order Gaussian AR sources relevant to
this paper. In these parametric cases, we can present universal
predictors, and in addition, we can determine, in many cases,
the optimal convergence rate to the optimal performance. In
many smooth parametric classes and continuous loss functions,
this rate behaves as , where is the number
of parameters, and is the data size.

A more complicated situation is when the source is known
to belong to some very large class of sources, e.g., the class
of all stationary and ergodic sources. In this class, universality
can be shown in many cases, but there is no uniform rate
of convergence to the optimal performance. Another class of
sources that is relevant for this paper is the class of Markov
sources with unknown model order or the class of AR( )
Gaussian sources with unknown order . Again, in these cases,
there is no uniform rate of convergence, as the rate can be slow
for high-order models. Nonetheless, it turns out that in certain
situations, it is possible to achieve a rate that is essentially as
small as if (or ) were known a priori. This is achieved by
a “twice universal” prediction scheme similar to the scheme
suggested later in this paper. The term “twice universal” was
coined by Ryabko [8], [9], who also originally suggested such
prediction algorithms.

In the deterministic setting of the universal prediction prob-
lem, the observed sequence is an individual sequence that is
not assumed to be randomly drawn by some probability law.
One difficulty associated with this setting is the desired goal.
Without any limitations on the class of allowed predictors,
there is always the perfect prediction function defined as

, i.e., a predictor tailored to the data. This
is a severe overfitting effect to the given data that misses
the essence of prediction as a causal, sequential mechanism.
Therefore, in this setting, we must limit the class of
allowed predictors in some reasonable way. For example,

could be the class of predictors that are implementable
by finite-state machines (FSM’s) with states or th-order
Markov-structured predictors of the form

. There are two relevant classes in this paper;
the first is a finite collection of RLS-based predictors, each of
a different model order, and the second is the class of fixed
predictors of the form , i.e., linear
predictors of some order .

In the deterministic setting of universal prediction, the
goal is then to perform, for any individual sequence, as
well as the best predictor, tuned to that sequence, in some
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class. Stated more formally, for a given class of pre-
dictors, we seek a universal sequential predictor
whose prediction algorithm is independent of the sequence,
yet its average loss is asymptotically
the same as for every sequence

. The universal predictor need not be
necessarily in , but it must be causal, whereas the reference
predictor in that minimizes the average loss may (by
definition) depend on the entire sequence , i.e., be allowed
to look at the sequence in advance.

Analogously to the probabilistic case, here we also dis-
tinguish between levels of universality, which are now in
accordance with the richness of the class . The first level
corresponds to an indexed class of predictors. Examples of this
are parametric classes of predictors like finite-state machines
with a given number of states, fixed-order Markov predictors,
predictors based on neural nets with a given number of
neurons, and, of course, fixed-order linear predictors. The rate
of convergence depends on the richness of the reference class.
A more complex level corresponds to very large classes like
the class of all finite-state predictors (without specifying the
number of states) operating on infinitely long sequences, etc.
Here, uniform rates of convergence may not exist. Finally, as
in the probabilistic setting, “twice universal” predictors can
be suggested that are universal with respect to a large class
of machines, yet their convergence rate, as compared with a
more limited class, e.g., linear predictors of order , depends
on the richness of that smaller class. See [10] for a recent
survey paper on universal prediction.

We end this section by discussing the recursive least squares
(RLS) prediction algorithm as an example of a universal
predictor for the class of linear predictors with a given
model order . As noted in the introduction, the RLS al-
gorithm essentially estimates the linear predictor coefficients

based on all of the data observed up to

time by minimizing .
These coefficients are then used to predict the sample as

. Once the sample is observed,
the coefficients are then updated to include this sample by
minimizing . This can be
done in a time-recursive efficient way. As defined in (4)
above, the resulting sequential prediction error, or “loss,” is

. The goal of the universal
algorithm is to attain the performance of the best algorithm
from a certain class, which, in our case, is the class of the

th-order linear predictors. The accumulated error of the best
th-order batch linear predictor is

defined in (2). It can be easily shown [7]
that for every signal, the sequentially achieved prediction error
will be greater than or equal to the batch prediction error, i.e.,

The interesting result, however, shown in [7], is that for every
bounded signal, the RLS algorithm can sequentially achieve
the average prediction performance of the batch algorithm to

within an term1

(5)

Thus, by “plugging in” the best estimate of the predictor
coefficients at time to predict , using RLS, we obtain a
universal prediction algorithm in the deterministic setting with
respect to the class of all fixed linear predictors of order .

In the stochastic setting, Davisson [11] has shown that
for a stationary Gaussian time series, the expected squared
sequential prediction error for a linear predictor of order
given data up to time is

(6)
where , which exists and is the
optimal expected square error without the sequentiality con-
straint, i.e., the batch error. Thus, by calculating the harmonic
sum of terms of the form , the time-averaged accumulation
of the additional prediction error of an RLS type algorithm
over the batch error is approximately for data of size

. This establishes the universality and the convergence rate
of the prediction algorithm based on RLS in the stochastic
Gaussian setting.

III. MAIN RESULTS

The main contribution of this paper is a twice universal lin-
ear prediction algorithm that does not fix the order in advance,
but rather weights all possible model orders according to their
performance so far. The accumulated average square error

of this algorithm is better, to within a negligible
term, than that of an RLS predictor whose order was preset to

for any less than some . Since the RLS algorithm
of order outperforms any fixed linear predictor of order ,
our algorithm attains asymptotically the performance of the
best fixed (or sequential) linear predictor of any order less
than . In our derivation, we only assume that the predicted
sequence is bounded, i.e., for
all , but is otherwise an arbitrary, real-valued sequence.

An explicit description of the universal predictor we suggest
is as follows. Let be the output of a sequential linear
predictor of order , as obtained by the RLS algorithm with
model order . The universal prediction at time , , is a
performance-weighted combination of the outputs of each of
the different sequential linear predictors of orders 1 through

, i.e.,

where

1 The impact of the model order was not accurately determined in [7];
however, a careful straightforward calculation can lead to an O(n�1p3 ln(n))
excess loss term.
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and is a constant parameter to be defined later. Our main
theorem (and its corollary) below relates the performance of
the universal predictor

to that of the best sequential and batch predictors of order less
than .

Theorem 1: Let be a bounded real-valued arbitrary
sequence such that . Then, satisfies

Corollary 1:

The corollary follows from the theorem and from (5).
The theorem and its corollary tell us that the average squared

prediction error of the universal prediction algorithm is within
of the best sequential linear prediction algorithm

and within of the best batch linear prediction
algorithm uniformly for every individual sequence . As we
will see, the cost terms can be identified as a model redundancy
term proportional to due to the lack of knowledge
of the best model order, plus a parameter redundancy term
proportional to due to the lack of knowledge of the
parameters and the learning time of RLS.

Regarding the parameter redundancy term, which is a result
of applying the RLS algorithm to individual sequences, we
have noted that following the analysis in [7], its dependence
on the model order is of the form . However,
in the stochastic case, as implied both by Davisson’s result and
Rissanen’s lower bound given in the general MDL context
[12], this redundancy is only . If the bound
derived by the technique of [7] is tight, it suggests that the
approach to “plug-in” the previous best parameters to predict
the next data point used by RLS is probably not the best
thing to do. In a current work (see [13]), we suggest a double
mixture approach over model orders and parameters to achieve
an bound. This may be indicative of a new
direction for adaptive parameter estimation based on mixture
parameter models.

Returning to the theorem, the basic idea behind its proof is
the following. We define a “probability” assignment of each
predictor to the data sequence such that the probability
is an exponentially decreasing function of the total squared
error for that predictor. This use of prediction error as a
probability or likelihood was also suggested by Rissanen [12]
and Vovk [14]. By defining a universal probability as an a
priori average of the assigned probabilities, then to first order
in the exponent, the universal probability will be dominated by
the largest exponential, i.e., the probability assignment of the
model order with the smallest total squared error. By relating
back the universal probability assignment to the accumulated

squared error of the universal predictor, we get the desired
result.

Proof of the Theorem: Suppose a set of sequential linear
predictors of order are given, and the loss
of each is defined in (4). We define the following
function of the loss of the th-order predictor

which can be viewed as a probability assignment of the th-
order model to the data for . We also define
a conditional probability

where the notation is taken to mean the in-
stantaneous loss at time , i.e., . Hence, the
probability assigned to the entire data sequence is simply a
product of the conditional probabilities. Define the universal
probability as

where . For this proof, we use uniform a priori
weights ; however, the proof can be constructed
with other weights leading to a slightly different “redundancy
term.” This yields a conditional probability

where

Note that the conditional universal probability
is a weighted average of the conditional probabilities

, where the weights are proportional to
: the performance of the th model on the data

through time .
By the definition of , we have



2690 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 10, OCTOBER 1999

which leads to

(7)

relating the negative of the logarithm of the universal prob-
ability to the total squared error of the best linear predictor,
i.e., the minimum loss over . However, how is this related
to , which is the total squared error of the universal
predictor? To answer this, we define another “probability” in
terms of the performance of the universal predictor

(8)

where is defined as

(9)

However

(10)

where . Note that in (8), is a product
of a function evaluated at a convex combination of values,
whereas in (10), is a product of a convex combination
of the same function evaluated at the same values. If the
function is concave and , then

by Jensen’s inequality. The function as defined in (9)
will be concave for any values such that . This
corresponds to

(11)

Since the signal , then the linearly predicted values
can always be chosen such that . If the linearly

predicted values are outside this range, then the prediction
error can only decrease by clipping. Therefore, by Jensen’s
inequality, whenever

the function will be concave at all of the points and

(12)

Whenever (12) holds, it yields, with (7)

Since

or

The proof is completed by choosing , which is the
smallest value that guarantees, without further assumptions,
that the concavity condition holds.

As noted in the proof, the model order redundancy term
can be improved upon. Rather than using a

priori weights , we could have weighted each of
the models inversely proportional to their model order, i.e.,

The proof remains intact with the model order redundancy
term being rather than , where
is the order of the model with the smallest prediction er-
ror. The resulting model order redundancy term becomes

. We can also relax the
assumption that there is a finite known largest order by
using an a priori weight distribution defined over all
the integers (e.g., the universal probability over the integers
suggested in [15]), although such a choice requires a compu-
tationally more complex algorithm.

An important factor that affects both the algorithm and the
convergence rate is the choice of . Condition (11) requires
only that upper bounds the square error of the largest
prediction error. We have taken a “worst case” cautious
approach and chose ; however, in many cases, we can
assume that the maximal prediction error is less than , and
therefore, can be smaller, leading to a smaller “redundancy
term.”

Finally, we note that the technique presented here actually
shows the following more general result. Suppose we have a
set of arbitrary predictors. The accumulated square error of
a predictor that uses a performance-weighted combination of
the output of these predictors is larger by at most
than the best predictor in this set in predicting any bounded
sequence. In other words, we have shown a universal predictor
that outperforms a set of “experts” (see [16] for the problem
definition). Universal prediction in this setting, with the square
error loss, was also discussed in [17]. The resulting extra loss
of the universal predictor suggested there is even better by a
factor of four than our predictor. However, the proposed algo-
rithm, based on the Vovk procedure [14], is more complicated
and cannot be represented as a weighted combination of the
“experts” predictions.
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TABLE I
UNIVERSAL LINEAR PREDICTION ALGORITHM BASED ON THE LEAST-SQUARES LATTICE ALGORITHM FOR TIME- AND ORDER-RECURSIVE COMPUTATION OF THE

PREDICTOR OUTPUTS. THE INPUT SIGNAL x[n] IS ASSUMED BOUNDED SUCH THAT jx[n]j < A FOR ALL n. THE AVERAGE SQUARED PREDICTION

ERROR OF THE OUTPUT x̂u[n] IS WITHIN O(A2 ln(M)=n) OF THE BEST MODEL ORDER LESS THAN M UNIFORMLY FOR EVERY SIGNAL

• Initialize:

! 
m[�1] = rm[�1] = Km+1[�1] = 0, for 0 � m <M

• For each time n � 0 compute:

! 
0[n] = 0

! e0[n] = r0[n] = x[n]

! �
e

0[n] = �
r

0[n] = w�
e

0[n� 1] + x
2[n]

! x̂0[n+ 1] = 0

• For each model order, 0 � m <M compute:

! Km+1[n] = wKm+1[n � 1] + em[n]rm[n � 1]=(1� 
m[n� 1])

! k
e

m+1[n] = Km+1[n]=�em[n], kr
m+1[n] = Km+1[n]=�rm[n� 1]

! em+1[n] = em[n]� k
r

m+1[n]rm[n � 1]

! rm+1[n] = rm[n� 1]� k
e

m+1[n]em[n]

! �
e

m+1[n] = �
e

m
[n]� k

r

m+1[n]Km+1[n]

! �
r

m+1[n] = �
r

m
[n� 1]� k

e

m+1[n]Km+1[n]

! 
m+1[n] = 
m[n] + r [n]

� [n]

• For each model order, 0 � m <M compute:

! x̂m+1[n + 1] = x̂m[n+ 1] + k
r

m+1[n]rm[n]=(1� 
m[n])

! ln(x; x̂m+1) = ln�1(x; x̂m+1) + (x[n]� x̂m+1[n])2

! �m+1[n+ 1] = exp(�ln(x; x̂m+1)=2c)=
M

k=1 exp(�ln(x; x̂k)=2c); c = 4A2

• Compute the universal predictor output:

! x̂u[n+ 1] = M

m=1 �m[n+ 1]x̂m[n+ 1]

IV. ALGORITHMIC ISSUES

The main result of this paper, as stated in Theorem 1, bounds
the prediction performance of the universal predictor to within
a model order redundancy term and a parameter redundancy
term from the performance of the best batch algorithm for
linear prediction. An issue that remains is the computational
complexity of the universal approach, which requires the
predicted values from each of the model orders and their
sequential prediction error to compute each predicted value.
At first glance, it might appear that the computational cost of
our universal predictor is rather high, requiring the solution
of each of the linear prediction problems in
parallel. However, the linear prediction problems for each
model order have a great deal in common with one another,
and this structure can be exploited. Indeed, just as the RLS
algorithm for a given model order can be written as a time
recursion, there exist time- and order-recursive solutions to
the least-squares prediction problem in which at each time
step, the th-order prediction problem can be constructed by
recursively solving for each of the predictors of lower order.
The resulting complexity of these algorithms can be made
to have operations per time sample, which results in
a total complexity of . See, for example, the least-
squares lattice algorithms in [18]–[23]. Although the universal

predictor can be computed using any one of a large class
of RLS algorithms, for completeness, one such least-squares
lattice algorithm from [24] is presented in Table I, along with
the modifications necessary to compute the universal predictor
output. This algorithm is based on a prewindowed least-
squares lattice algorithm with a posteriori residuals. In order
to compute the a priori predictions of each of the different
model orders and the universal predictor output, the last four
equations have been added. A forgetting factor has been
included to emphasize the most recent data in the calculation
of the parameters. Setting corresponds to the growing
memory least-squares prediction problem. To compute the
exact least-squares solution, successive stages of the lattice
must be “turned on” at each time for , i.e., the
order recursions are computed up to order for . An
alternative initialization, which is often used, is to set the cost
functions and to a small constant to ensure
that the algorithm is stable, and then, the order recursions can
be computed for all at each time. This does not produce
an exact least-squares solution; however, it is generally very
close to the exact solution.

This algorithm can be viewed as operating separate
adaptive filters, or linear predictors, and combining their
results with a performance-weighted average. At each time,
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TABLE II
UNIVERSAL EQUALIZATION ALGORITHM BASED ON THE LEAST-SQUARES ADAPTIVE LATTICE EQUALIZATION ALGORITHM FOR TIME- AND ORDER-RECURSIVE

COMPUTATION OF THE LATTICE EQUALIZER PARAMETERS. THE INPUT SIGNAL x[n] IS ASSUMED BOUNDED SUCH THAT jx[n]j < A FOR ALL n. THE AVERAGE SQUARED

EQUALIZATION ERROR AFTER TRAINING OF THE OUTPUT ŷu[n] IS WITHIN O(A2 ln(M)=n) OF THE BEST MODEL ORDER LESS THAN M UNIFORMLY FOR EVERY SIGNAL

For each time n � 0 compute:

• Initialize:

! e0[n] = r0[n] = x[n]

! �
e

0
[n] = �

r

0
[n] = w�

e

0
[n� 1] + x

2[n]

! y
�1[n] = 


�1[n] = 

�1[n� 1] = 0

! e
�1[n] = a[n]

• For each model order, m = 0; � � � ; M � 1 compute:

! km[n] = wkm[n � 1] + (1� 
m�1[n� 1])em[n]rm[n� 1]

! em+1[n] = em[n] � km[n� 1]rm[n� 1]=�r
m
[n� 2]

! rm+1[n] = rm[n� 1]� km[n� 1]em[n]=�e
m
[n� 1]

! �
e

m+1[n] = �
e

m
[n]� k

2
m
[n]=�r

m
[n� 1]

! �
r

m+1
[n] = �

r

m
[n� 1]� k

2
m
[n]=�e

m
[n]

! 
m[n] = 
m�1[n] + ((1� 
m�1[n])rm[n])2=�r
m
[n]

• For each model order, m = 0; � � � ; M compute:

! ym[n] = ym�1[n] + km[n � 1]rm[n]=�r
m
[n� 1]

! em[n] = a[n]� ym[n]

! ln(a; ym) = ln�1(a; ym) + e
2
m
[n]

! km[n] = wkm[n� 1] + (1� 
m�1[n])em�1[n]rm[n]

! �m[n] = exp(�ln�1(a; ym)=2c)= M

k=1
exp(�ln�1(a; yk)=2c); c = 4A2

• Finally

! ŷu[n] =
M

m=1
�m[n]ym[n]

the universal predictor weights each of the separate predicted
values by , which is proportional to .
As a result, each of the different model orders compete for a
contribution to the output, with their contributions depending
exponentially on their cumulative sequential performance. If
any of the model orders outperforms the others, then its weight
will be exponentially larger than the rest. However, the model
order with the best cumulative performance can change over
the length of the data, giving more weight to models of
different orders with time.

The inclusion of an adaptation parameter or forgetting factor
can be used to accommodate slowly time-varying signals.
Here, the parameters of the predictor for each model order
are calculated with an exponentially decreasing emphasis on
the past. As a result, the parameters reflect the most recent
data over an “effective window” of length . If the
mixture weights of the universal predictor are computed using
the accumulated square-error, i.e., , then regardless
of how the parameters are selected for each model order, by
Theorem 1, the accumulated square error for the universal
predictor will be within of the performance of
the best model order. However, if the mixture weights are
computed using the adaptation parameter

then the results of Theorem 1 still hold with the performance
measured by , that is

As is often used in adaptive filtering applications, a finite-
length sliding window, such as a Hamming window [20], can
be applied to the data and the performance measure with the
results of Theorem 1 remaining intact.

There is nothing in the development of Theorem 1 that
requires that the outputs of the adaptive filters be predictions
of the input signal. All that is required is that the perfor-
mance metric among several candidate algorithms is one of
sequentially accumulated squared error. The main result is
actually more general in that it applies to any sequential
decision problem in which several candidate approaches are
compared using their sequentially accumulated squared errors.
As an example of another application of this result, an adaptive
equalization algorithm can be developed as a direct analog of
the prediction algorithm. For example, suppose that a data
sequence is transmitted over a noisy channel such that
the received signal could be represented as
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(a) (b)

(c) (d)

Fig. 2. Prediction results for a sample function of the fourth-order AR process (13). The average squared sequential prediction error ln(x; x̂p) and the
associated batch prediction errors Ep[n] for each of the pth-order linear predictors p = 1; � � � ; 8 are indicated with “o” and “x” marks, respectively.
The prediction errors resulting from “plug-in” of the MDL-order predictor and the PLS-order predictor at each time step are indicated by the solid and
dotted lines, respectively. The prediction performance of the universal predictor with performance weighting is indicated by the dashed line. (a) Twenty-five
samples. (b) Fifty samples. (c) One hundred samples. (d) Five hundred samples.

where the impulse response of the channel represents a
convolutional distortion, and the signal corresponds to
additive noise. Consider a loss function

where is the input, and is the output of the th-
order least-squares equalizer for data corresponding to
the output total squared equalization error for an equalizer of
order . An algorithm that generates a performance-weighted
average of the outputs of all linear equalizers of order less
than can be constructed by similar means to the univer-
sal predictor. Since lattice methods also exist for a variety
of adaptive filtering applications, including equalization, the

outputs of each of the equalizers of order less than some
can all be constructed recursively. The computational cost of
the algorithm is once again only as large as that for the largest
model order, i.e., . For simplicity, we only consider
real-valued scalar data, although generalization of the lattice
methods to complex vector data is straightforward, as would be
required to implement decision-feedback or use multichannel
data [22], [25]. As an example, we modify the least-squares
adaptive lattice equalizer of [26] to construct a universal
adaptive equalizer in Table II. The algorithm takes as input
a received signal , a training data sequence , and a
maximum model order . A tracking parameter has
been included to track small variations in the channel impulse
response. Setting corresponds to the growing memory
least-squares equalization problem. When the equalizer is
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(a) (b)

(c) (d)

Fig. 3. Average prediction results for 100 different sample functions of the fourth-order AR process (13). The average squared sequential prediction error
ln(x; x̂p) and the associated batch prediction errors Ep[n] for each of the pth-order linear predictors p = 1; � � � ; 8 are indicated with “o” and “x” marks,
respectively. The prediction errors resulting from “plug-in” of the MDL-order predictor and the PLS-order predictor at each time step are indicated by the
solid and dotted lines, respectively. The prediction performance of the universal predictor with performance weighting is indicated by the dashed line. (a)
Twenty-five samples. (b) Fifty samples. (c) One hundred samples. (d) Five hundred samples.

operating on a training sequence , Table II provides the
proper update formulas. To run in decision-directed mode on
transmitted data, could be replaced by a suitably quantized

or .

V. EXAMPLES

We illustrate the performance of the universal linear predic-
tion algorithms developed in this paper with several examples
of signal prediction and data equalization. The first set of
examples involve the prediction of sample functions from the
fourth-order autoregressive process described by

(13)

where is a sample function from a stationary white
Gaussian noise process with unit variance. Since the main
result of this paper governs the performance of the prediction
algorithm for any particular individual signal, Fig. 2 shows the
running average squared prediction error for a single sample
function from (13). The performance-weighted universal pre-
diction algorithm developed in Section IV and given in Table I
was used for a single realization of . The parameter was
set to 4; however, the performance is relatively insensitive
to changes in . Although the process is actually of fourth
order, as indicated in Fig. 2(a), initially , the
third order sequential linear predictor outperforms each of the
other sequential predictors. As the data length is increased,
the fourth-order predictor begins to outperform the others.
For data lengths of 50, 100, and 500 samples, the universal
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(a) (b)

Fig. 4. Difference between the average prediction error of the universal predictor and the best batch predictor for a single sample function and for an
average over an ensemble of 100 sample functions of (13) are shown as a function of the length of the data record. The “x” marks indicate the data points
of Figs. 2 and 3; the lines are added as visual aids only. (a) Individual sequence. (b) Ensemble average.

(a) (b)

Fig. 5. Mixture weights �k[n] in the universal predictor of Table I are shown as a function of time and model order for a fourth-order autoregressive
process. (a) Mixture weights versus time and model order. (b) Model orders 1 through 4 versus time.

algorithm, which is depicted by the dashed line, outperforms
all of the model orders, and for , the performance
is very close to the best model order. In the figure, the
performance of “plug-in” approaches using the MDL and
PLS criteria are also shown. At each time sample, the model
order indicated by the corresponding order-estimate was used
to predict the current sample. For brevity, we refer to the
MDL estimate as the model order with the minimum batch
prediction error plus linear penalty term and the PLS estimate
as the minimum sequential prediction error. The performance-
weighted universal approach appears particularly useful for
short data records or during the startup or learning time of the
individual sequential predictors. Note that the final prediction
error of this individual sequence appears to be around 0.9
rather than 1, as might be expected from (13). Regardless of

the value of the minimum error and of which model order
achieves it, this universal algorithm is able to adaptively
select among the best-performing candidate algorithms. This
makes it attractive for adaptive processing in time-varying
environments for which a windowed version of the most
recent data is typically used [20]. Such applications require
that algorithms continually operate in the short effective data-
length regime.

In Fig. 3, similar results to those in Fig. 2 are presented and
averaged over 100 different sample functions from (13). The
ensemble average performance and rates for the autoregressive
process are characteristically similar to those for a given
sample function. However, for shorter data records, the plug-
in approaches appear to be considerably worse on average
than indicated in Fig. 2. In addition, the sequential algorithms
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(a) (b)

Fig. 6. Top figure shows an autoregressive process that switches between a second- and fourth-order process every 500 samples. The middle figure shows
the mixture weights �k[n], k = 2; 4 in the universal predictor of Table I for the exponential window and sliding rectangular window. The bottom figure
shows the index of model order that has the largest weight as a function of time. (a) Exponential window. (b) Sliding rectangular window.

exhibit a more distinct minimum running average prediction
error as a function of model order.

In Figs. 2 and 3, the universal algorithm is shown to achieve
the performance of the best of the sequential linear predic-
tion algorithms. As the data record increases, the universal
algorithm also attains the performance of the best “batch”
algorithm. Although the sequential linear predictors will also
asymptotically achieve their corresponding batch performance,
the rate at which the universal algorithm achieves the best
batch performance is at least as fast by Theorem 1 and its
corollary. In Fig. 4, the rate at which the universal algorithm
approaches the best batch performance is shown as a function
of the data length. By Theorem 1 and its corollary, this rate
is at most .

To further illustrate the operation of the model order mixture
in the universal predictor, Fig. 5 depicts the mixture weights

as a function of time and model order during the
prediction of the fourth-order autoregressive process used to
generate Fig. 2. The waterfall plot in Fig. 5(a) depicts the
progression of each of the mixture weights and illustrates how
the weights initially favor lower model orders until the fourth-
order model eventually outperforms and outweighs the rest.
Fig. 5(b) focuses on the first 50 samples of operation and
demonstrates how initially, the second- and third-order models
receive the largest weight for the first few samples. The third-
order model dominates from about the fifth through the 17th
sample, after which the fourth-order model receives the largest
weight. Note that for stability purposes, the operation of the
universal predictor was started after the tenth sample.

The algorithm described in Table I corresponds to a growing
memory implementation of the RLS algorithm. This means
that the number of data samples used to compute the prediction
parameters increases as a function of time. To accommo-
date time-varying signals, such growing memory algorithms
typically use a tracking parameter , as indicated in
Table I. This enables the parameters of the predictor to track

Fig. 7. Prediction results for a 10 ms segment of speech for the word
“door” recorded at 10 kHz or 100 samples. The average squared sequential
prediction error ln(x; x̂p) and the associated batch prediction errors Ep[n]
for each of the pth-order linear predictors p = 1; � � � ; 30 are indicated
with “o” and “x” marks, respectively. The prediction errors resulting from
“plug-in” of the MDL-order predictor and the PLS-order predictor at each
time step are indicated by the solid and dotted lines, respectively. The
prediction performance of the universal predictor with performance-weighting
is indicated by the dashed line.

slow variations in the process by emphasizing the most recent
samples in the data history. If a tracking parameter is used,
the weighting that is applied to the data corresponds to an
exponential window, where the distant past, say, a sample at

, is weighted exponentially as a function of its distance
from the present sample . Another method that is often
used to capture the most recent behavior of a process is the
class of sliding window algorithms in which only a finite-
length windowed version of the most recent signal history is
used to compute the prediction parameters. Examples of both
sliding window and growing window implementations of the
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(a) (b)

(c) (d)

Fig. 8. Mean squared equalization error after training with a BPSK (�1) sequence of length 25, 50, 100, and 200. Results are shown for an ensemble
average over 100 sample training sequences. The average squared equalization error for each of the pth-order linear equalizers, p = 1; � � � ; 10 are indicated
with “o” marks. The average squared equalization error resulting from a performance weighting of all model orders is indicated by the solid line. (a)
Twenty-five samples. (b) Fifty samples. (c) One hundred samples. (d) Two hundred samples.

RLS algorithm can be found in [20] and [24]. In Fig. 6, the
performance of the universal prediction algorithm of Table I
is shown when applied to an autoregressive process that
switches between a second- and fourth-order process every 500
samples. The tracking parameter was set to , which
corresponds to an effective window size of approximately

samples. The top plot in Fig. 6(a) displays
the signal to be predicted, which begins as a second-order
process and then switches back and forth between a fourth- and
second-order process at time sample 500, 1000, and 1500. The
middle plot in the figure displays the weights and ,
which indicate the contribution of the second- and fourth-order
predictors to the output of the universal predictor. The bottom
plot in the figure indicates the model order whose weight
was the largest at each point in time. As might be anticipated,
initially, it is the first- and then second-order predictor that

has the largest weight. After 500 samples, when the process
changes from a second-order to a fourth-order model, the
predictor receiving the largest weight becomes the fourth-
and third-order models. Once the process changes back to a
second-order model after 1000 samples, it is again the second-
order predictor that receives the largest weight. Finally, when
the process changes back to fourth order, the weight again
shifts. Note that although there is a noticeable change in the
weights at the transition points, there is finite delay between
the process model order change and the time in which the
predictor of that order begins to receive a larger weight. In
Fig. 6(b), the same set of plots are shown for an algorithm
that uses a sliding rectangular window of 250 samples.

Speech processing is a common application in which AR
modeling and linear prediction arise [19], [27], [28]. In many
applications, an AR model is applied to a segment of speech
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over which the signal is assumed to be stationary: typically
10–20 ms. At a sample rate of 10 kHz, for the linear model,
we use only on the order of a few hundreds of samples of
the speech signal. While there is a tendency to use larger
order linear models to extract a finer resolution of the spectral
envelope of the speech signal, the larger order models come
at cost of temporal resolution since longer segments of speech
are required to accurately estimate the parameters of the AR
model. This tradeoff between model order and data length,
which is pervasive in speech modeling, indicates that our uni-
versal approach might be of significant use. As an example, the
prediction performance of the universal algorithm of Table I
is shown in Fig. 7 for a 10-ms segment from the spoken
word “door.” The speech signal was normalized to have unit
variance, and the parameter was set to its maximum absolute
value of 2.8. The performance-weighted approach outperforms
almost all of the sequential linear predictors as well as the
commonly used plug-in approaches.

The final example on data equalization is indicative of
the broad scope of adaptive filtering applications to which
our performance-weighted approach might apply. To simulate
propagation over a multipath channel with a signal to noise
ratio of about 30 dB, an ensemble of 100 BPSK ( ) signals

were convolved with the impulse response of the filter
with transfer function

in additive white Gaussian noise of stan-
dard deviation 0.025. In Fig. 8, the ensemble average mean
squared equalization error after training with 25, 50, 100,
and 200 samples are shown. The running-average squared
equalization error for each of the th-order linear equalizers

are shown along with that resulting from
the performance-weighted algorithm of Table II. The universal
algorithm rapidly achieves the performance of the best model
order and exceeds this performance by the time the data length
reaches 100 samples.

VI. CONCLUDING REMARKS

The main result of this paper is an algorithm that is
twice universal [8], [9] for linear prediction with respect to
model orders and parameters. It uses a performance average
prediction of all sequential linear predictors up to some model
order. The algorithm is applicable to a variety of signal
processing applications, including forecasting, equalization,
adaptive filtering, and predictive coding—practically any se-
quential processing where the measure of performance is the
sequentially accumulated mean-square error. The motivating
example used in much of this paper was the problem of
linear prediction or adaptive AR modeling. Thus, the universal
predictor presented here will perform as well as the best
linear predictor of any order up to some maximum order
uniformly for every bounded individual sequence. As such,
the problem of model order selection for linear prediction has
been mitigated in favor of a performance-weighted average
among all model orders. Since efficient lattice algorithms can
be used to recursively generate all of the linear predictors at
the computational price of only the largest model order, the
universal predictor is computationally very efficient. Extending

the realm of adaptive signal processing algorithms to one
in which algorithms are not only optimal in a stochastic
framework, but also with respect to individual sequences, is
both an exciting direction of this work and an indication that
many traditional techniques may be applicable to a much
broader class of problems.
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